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This course presents the basic principles of statistical inference (estimation, mean comparison, 
variance analysis and linear regression) as well as a practical introduction to the R language. It 
corresponds to Bernard Giusiano's classes on Tuesday, Wednesday and Thursday. 

PART III 

Simple linear regression 

Having seen with ANOVA how to test the relationship between a quantitative variable (explained 
variable) and one or more qualitative variables (factors, explanatory variables), let us now look at 
the relationship between two quantitative variables. 

For that we will use other columns of the original data of the article of Reilly and Kean. Create a 
new script in which you will start by importing the Reilly and Kean data again and doing some 
initializations. 

originalData <- read.csv2("imageability.csv")  # default: read.csv2(file, header = 
TRUE, sep = ";", dec = ",") 
par0 <- par(no.readonly = TRUE)  # backup the whole list of settable default 
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parameters. 
set.seed(427)  # to initialize random generator at the same value each time 

Do you remember how we list the names of the columns? 

The variables that will interest us are: 
* WORD 
* BFRQ = verbal frequency, 
* CNC = concretness, 
* FAM = familiarity, 
* IMG = imageability (how easily a person can form an associated mental image), 
* KFFRQ = written frequency, 
* NLET = number of letters, 
* NSYL = number of syllables, 
* Etymology = origin of the word, 
* I_NMG_Mean_RT = the mean naming latency (in msec) for a particular word. 

myData2 <- originalData[,c(1,5,6,7,8,9,10,12,19,28)] 
summary(myData2) 

##           WORD           BFRQ           CNC            FAM        
##             : 617          :1718          : 617   Min.   :158.0   
##  ABANDONMENT:   1   -      : 463   -      :  74   1st Qu.:441.0   
##  ABDUCTION  :   1   1      : 371   595    :  24   Median :502.0   
##  ABILITY    :   1   2      : 185   576    :  23   Mean   :488.9   
##  ABODE      :   1   3      : 131   565    :  22   3rd Qu.:545.0   
##  ABSCESS    :   1   4      :  76   590    :  22   Max.   :657.0   
##  (Other)    :2872   (Other): 550   (Other):2712   NA's   :617     
##       IMG          KFFRQ              NLET             NSYL       
##  Min.   :210   Min.   :   1.00   Min.   : 2.000   Min.   :1.000   
##  1st Qu.:410   1st Qu.:   5.00   1st Qu.: 5.000   1st Qu.:1.000   
##  Median :495   Median :  15.00   Median : 6.000   Median :2.000   
##  Mean   :485   Mean   :  47.64   Mean   : 6.297   Mean   :2.038   
##  3rd Qu.:567   3rd Qu.:  47.00   3rd Qu.: 8.000   3rd Qu.:3.000   
##  Max.   :667   Max.   :3292.00   Max.   :14.000   Max.   :6.000   
##  NA's   :617   NA's   :848       NA's   :617      NA's   :617     
##    Etymology     I_NMG_Mean_RT    
##  Min.   :1.000   Min.   : 510.9   
##  1st Qu.:1.000   1st Qu.: 598.9   
##  Median :1.000   Median : 634.3   
##  Mean   :1.833   Mean   : 647.8   
##  3rd Qu.:2.000   3rd Qu.: 682.3   
##  Max.   :5.000   Max.   :1070.1   
##  NA's   :617     NA's   :638 

Let's clean up the data in the same way we did for ANOVA: 

# recode Etymology 
origins <- c("Latin","Germanic","Greek","Other","Unknown origin") 
myData2[,"Etymology"] <- origins[myData2[,"Etymology"]] 
myData2$Etymology <- as.factor(myData2$Etymology) 
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myData2 <- myData2[complete.cases(myData2),]        # delete rows with NA's 
summary(myData2) 

##           WORD           BFRQ          CNC            FAM        
##  ABANDONMENT:   1          :951   -      :  69   Min.   :158.0   
##  ABDUCTION  :   1   -      :396   595    :  22   1st Qu.:454.0   
##  ABILITY    :   1   1      :361   565    :  21   Median :507.0   
##  ABODE      :   1   2      :181   576    :  21   Mean   :495.1   
##  ABSOLUTION :   1   3      :130   590    :  21   3rd Qu.:548.0   
##  ABUNDANCE  :   1   4      : 75   558    :  19   Max.   :657.0   
##  (Other)    :2636   (Other):548   (Other):2469                   
##       IMG            KFFRQ              NLET             NSYL      
##  Min.   :210.0   Min.   :   1.00   Min.   : 2.000   Min.   :1.00   
##  1st Qu.:409.0   1st Qu.:   5.00   1st Qu.: 4.000   1st Qu.:1.00   
##  Median :494.0   Median :  15.00   Median : 6.000   Median :2.00   
##  Mean   :484.6   Mean   :  47.71   Mean   : 6.269   Mean   :2.03   
##  3rd Qu.:567.0   3rd Qu.:  47.00   3rd Qu.: 8.000   3rd Qu.:3.00   
##  Max.   :667.0   Max.   :3292.00   Max.   :14.000   Max.   :6.00   
##                                                                    
##           Etymology    I_NMG_Mean_RT    
##  Germanic      : 830   Min.   : 510.9   
##  Greek         : 131   1st Qu.: 596.4   
##  Latin         :1395   Median : 632.2   
##  Other         : 116   Mean   : 645.0   
##  Unknown origin: 170   3rd Qu.: 678.7   
##                        Max.   :1070.1   
##  

BFRQ and CNC variables are not considered numerical because they have "-" values. Let's remove 
this problem. 

myData2[(myData2$BFRQ=="")|(myData2$BFRQ=="-"),"BFRQ"] <- NA 
myData2[(myData2$CNC=="")|(myData2$CNC=="-"),"CNC"] <- NA 
myData2$BFRQ <- as.numeric(myData2$BFRQ) 
myData2$CNC <- as.numeric(myData2$CNC) 
summary(myData2) 

##           WORD           BFRQ           CNC             FAM        
##  ABANDONMENT:   1   Min.   : 3     Min.   :  3.0   Min.   :158.0   
##  ABDUCTION  :   1   1st Qu.: 3     1st Qu.:134.0   1st Qu.:454.0   
##  ABILITY    :   1   Median :28     Median :254.0   Median :507.0   
##  ABODE      :   1   Mean   :34     Mean   :235.8   Mean   :495.1   
##  ABSOLUTION :   1   3rd Qu.:54     3rd Qu.:342.0   3rd Qu.:548.0   
##  ABUNDANCE  :   1   Max.   :99     Max.   :419.0   Max.   :657.0   
##  (Other)    :2636   NA's   :1347   NA's   :69                      
##       IMG            KFFRQ              NLET             NSYL      
##  Min.   :210.0   Min.   :   1.00   Min.   : 2.000   Min.   :1.00   
##  1st Qu.:409.0   1st Qu.:   5.00   1st Qu.: 4.000   1st Qu.:1.00   
##  Median :494.0   Median :  15.00   Median : 6.000   Median :2.00   
##  Mean   :484.6   Mean   :  47.71   Mean   : 6.269   Mean   :2.03   
##  3rd Qu.:567.0   3rd Qu.:  47.00   3rd Qu.: 8.000   3rd Qu.:3.00   
##  Max.   :667.0   Max.   :3292.00   Max.   :14.000   Max.   :6.00   
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##                                                                    
##           Etymology    I_NMG_Mean_RT    
##  Germanic      : 830   Min.   : 510.9   
##  Greek         : 131   1st Qu.: 596.4   
##  Latin         :1395   Median : 632.2   
##  Other         : 116   Mean   : 645.0   
##  Unknown origin: 170   3rd Qu.: 678.7   
##                        Max.   :1070.1   
##  

Principle of simple linear regression 

Let's start with a single quantitative variable explained, the naming latency (I_NMG_Mean_RT) and 
a single explanatory quantitative variable (IMG, imageability in its quantitative form). 

plot(myData2$IMG, myData2$I_NMG_Mean_RT) 

 

This cloud of points does not tell us much. 
Would these two variables be independent? If they are, their covariance must be 0. 
The covariance characterizes the simultaneous variations of two random variables: it will be 
positive when the differences between the variables and their means tend to be of the same sign, 
negative otherwise. 

𝑐𝑜𝑣 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛
𝑖=1

𝑛
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cov(myData2$IMG, myData2$I_NMG_Mean_RT) 

## [1] -2118.609 

So there is a relationship between the two variables. They vary in the opposite direction. 
Correlation coefficient is a standardized form of covariance to evaluate the intensity of the 
relationship between the two variables. Its denominator is the product of the numerators of the 
standard deviation of the two variables. It is between -1 and +1 and is calculated by the following 
formula: 

𝑟 =
∑ (𝑥𝑖 − 𝑥)𝑛
𝑖=1 (𝑦𝑖 − 𝑦)

√∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1

 

With 𝑥𝑖  the values of the variable IMG, 𝑥 its mean, 𝑦𝑖 the values of I_NMG_Mean_RT and 𝑦 its mean, 
we can evaluate the intensity of the relationship with the R function cor(). 

cor(myData2$IMG,myData2$I_NMG_Mean_RT) 

## [1] -0.3221554 

Binding that measures the correlation coefficient is symmetric: it is the same between x and y and 
between y and x. But this measure of correlation implies a linear link between the two variables, 
that is to say a link of the type 𝑦 = 𝑎𝑥 + 𝑏. The shape of the link is often noticeable in the cloud of 
points drawn on a graph. 

 
http://math.fdltcc.edu/wetherbee/books/m1030/IntroStatistics.pdf 

A simple transformation on the correlation coefficient makes it possible to test its significance on 
the basis of Student's t-law, the null hypothesis being that the coefficient in the population is equal 
to 0 and that its value calculated on the sample is different from 0 only because of sampling 
fluctuations. 

cor.test(myData2$IMG,myData2$I_NMG_Mean_RT) 

https://www.spss-tutorials.com/pearson-correlation-coefficient/
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##  
##  Pearson's product-moment correlation 
##  
## data:  myData2$IMG and myData2$I_NMG_Mean_RT 
## t = -17.485, df = 2640, p-value < 2.2e-16 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  -0.3559173 -0.2875535 
## sample estimates: 
##        cor  
## -0.3221554 

Now that we know how to evaluate the relationship between two variables, the linear regression 
method allows us to go further and to predict the values of one variable according to the values of 
the other once we have chosen the direction of the relationship that interests us. 

To simplify the plots of our demonstration, we will draw a small subsample of our data and 
rename 𝑥 the imageability and 𝑦 the naming latency. The variable 𝑦 is designated in different 
ways: response variable, variable to explain, dependent variable, outcome; the variable 𝑥: predictor, 
regressor, explanatory variable, independent variable. 

library(PerformanceAnalytics) 

demoData <- myData2[sample(nrow(myData2), 30), c("IMG","I_NMG_Mean_RT")] 
colnames(demoData) <- c("x","y") 
chart.Correlation(demoData) 

 

plot(demoData$x, demoData$y, xlim=c(min(demoData$x)-10, max(demoData$x)+10), 
ylim=c(min(demoData$y)-10, max(demoData$y)+10)) 
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Linear regression aims to fit a straight line to data that for any value of 𝑥 gives the best prediction 
of 𝑦. In the equation of this line 𝑦 = 𝑎𝑥 + 𝑏, the regression calculate the slope 𝑎 of the line and its 
ordinate at the origin 𝑏, the intercept. 

Many functions exist in R to compute many different types of regression. For now, we use the 
simplest function, lm() (for "linear model"). 

myDemoRegModel <- lm(y ~ x, data=demoData) 
summary(myDemoRegModel) 

##  
## Call: 
## lm(formula = y ~ x, data = demoData) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -157.82  -43.27  -10.46   41.21  228.39  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 886.6218    70.5978  12.559 5.05e-13 *** 
## x            -0.4751     0.1455  -3.266  0.00288 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 75.97 on 28 degrees of freedom 
## Multiple R-squared:  0.2758, Adjusted R-squared:   0.25  
## F-statistic: 10.67 on 1 and 28 DF,  p-value: 0.002881 

We will detail these results later, but let's start with the statistical magic that finds this line that 
seems to summarize the link between the variable 𝑥 and the variable 𝑦. This line has for equation 

(𝑦 not to confuse estimated 𝑦 with observed 𝑦): 
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𝑦 = −0.4751𝑥 + 886.6218 

plot(demoData$x, demoData$y, xlim=c(min(demoData$x)-10, max(demoData$x)+10), 
ylim=c(min(demoData$y)-10, max(demoData$y)+10)) 
# draw the regression line 
abline(myDemoRegModel, lwd=2) 

 

In the following graph, the red lines represent the residuals, i.e. the differences between the 
observed data and the data predicted by the regression, more precisely the differences between 
the ordinates since the values of 𝑦 are predicted for the values of 𝑥 observed. 

plot(demoData$x, demoData$y, xlim=c(min(demoData$x)-10, max(demoData$x)+10), 
ylim=c(min(demoData$y)-10, max(demoData$y)+10)) 
abline(myDemoRegModel, lwd=2) 
# calculate residuals and predicted values 
res <- signif(residuals(myDemoRegModel), 5)  # try "? signif" 
pre <- predict(myDemoRegModel) 
# plot distances between points and the regression line 
segments(demoData$x, demoData$y, demoData$x, pre, col="red") 
# add labels (res values) to points 
text(demoData$x, demoData$y, labels=res, cex=0.8, pos=4) 
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The principle is to find the straight line which passes as close as possible to the set of points by 
turning the line on a hinge point having as coordinates (𝑥, 𝑦). This fitting aims to minimize the 
sum of the squared errors (red lines) between observed points and predicted points (squared 
errors so that negative values do not negate positive values). For models with only one regressor, 
the calculation of parameters of this straight line is easy: 

𝑠𝑙𝑜𝑝𝑒: 𝑎 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1

 

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡: 𝑏 = 𝑦 − 𝑎𝑥 

The slope corresponds to the variation of 𝑦 when 𝑥 varies by one unit. 

yPred <- predict(myDemoRegModel,data.frame(x=c(500,501))) 
yPred[2] - yPred[1] 

##          2  
## -0.4751029 

This method of estimation for linear models is called the ordinary least squares (OLS) linear 
regression. It is the most common method, but there are others, especially the maximum likelihood 
method, that have extended the concept of regression to distributions other than normal 
distributions (generalized linear model of regression). 

Results of simple linear regression in R 

Let's go back to the application of the lm() function on our demo sample. 
Did you try the str() function on its result? 
Let's detail what gives us the function summary(): 

Call: 
lm(formula = y ~ x, data = demoData) 

http://setosa.io/ev/ordinary-least-squares-regression/
http://setosa.io/ev/ordinary-least-squares-regression/
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Just recall the called function (lm()) with the formula expressing the model (y ~ x) and the name of 
the data frame containing the data of the formula. 

The equation giving the observed 𝑦 must add a term to the equation giving the estimated 𝑦 (𝑦): 
the errors (𝜖𝑖) (or residuals) represented by the red lines on the graph seen above. It's the 
difference between the observed values and the values predicted by the model. 

𝑦𝑖 = −0.4751𝑥𝑖 + 886.6218 + 𝜖𝑖  

Residuals: 
    Min      1Q  Median      3Q     Max  
-157.82  -43.27  -10.46   41.21  228.39  

The Residuals section gives an idea of the symmetry of the distribution of residuals. We will see 
later that the residuals must be normally distributed. 

# We can calculate this section like so: 
summary(demoData$y - myDemoRegModel$fitted.values) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## -157.80  -43.27  -10.46    0.00   41.21  228.40 

The Coefficients section gives the estimate of intercept and slope (coefficient of the predictor 𝑥): 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 886.6218    70.5978  12.559 5.05e-13 *** 
x            -0.4751     0.1455  -3.266  0.00288 **  

The standard error of the coefficient captures how much uncertainty is associated with this 
coefficient. 

n = length(myDemoRegModel$residuals) 
SSE = sum(myDemoRegModel$residuals**2) 
SSxx = sum((demoData$x - mean(demoData$x))**2) 
# Standard Error of coefficient of x 
sqrt((SSE/(n-2))/SSxx) 

## [1] 0.1454752 

This standard error is used to compute a t-value that is needed to statistically test the signifiance 
of the coefficient with H0 is "the coefficient equal 0". If, as it's the case here, Pr(>|t|) <= 0.05 for 𝑥 
then we can conclude with an 𝛼 risk of 5% that 𝑦 depends on 𝑥. 

# t-value for coefficient of x = estimate / std. error 
coef(myDemoRegModel)[2] / sqrt((SSE/(n-2))/SSxx) 

##         x  
## -3.265869 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The way to interpret the stars in terms of significativity (* significant, ** very significant, *** highly 
significant). 
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Residual standard error: 75.97 on 28 degrees of freedom 

The residual standard error is like a global standard deviation of the error but with a number of 
degrees of freedom that take into account the number of predictors. It's a measure of the quality of 
the linear regression: the smaller it is, the closer the observed values are to the regression line. 

k = 1  # number of predictors 
df <- n - (1 + k) 
df 

## [1] 28 

# Residual Standard Error 
sqrt(SSE / df) 

## [1] 75.96789 

Multiple R-squared:  0.2758,    Adjusted R-squared:   0.25  

The R-squared statistic, also called the coefficient of determination, provides a measure of the 
proportion of the variance in the data that's explained by the model. In our example, the R-
squared we get is 0.2758; it means that roughly 28% of the variance found in the response 
variable 𝑦 can be explained by the predictor variable 𝑥. 

SSyy = sum((demoData$y - mean(demoData$y))**2) 
# Multiple R-Squared (Coefficient of Determination): 
(SSyy - SSE)/SSyy 

## [1] 0.2758477 

In multiple regression (that we will see later), the R2 will increase as more variables are included 
in the model; that’s why the adjusted R2 is the preferred measure as it adjusts for the number of 
variables considered. 

F-statistic: 10.67 on 1 and 28 DF,  p-value: 0.002881 

The F-Statistic is a global test that checks if at least one of the coefficients are non-zero. 

# F-statistic: 
((SSyy - SSE)/k) / (SSE/(n-(k + 1))) 

## [1] 10.6659 

Conditions of application of linear regression 

All the calculations we made about this linear regression are valid only if the following 
assumptions are true. 
* The relationship between the two variables must be globally linear, at least roughly. This is the 
graphical representation that can convince us easily. 
* The residuals must be independent. If the data come from different individuals, they are usually 
independent. But if the independent variable is temporal, the residuals are probably not 
independent, or if the values correspond to repeated measurements on the same subjects, then the 
residuals are not independent. 
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* The residuals have a homogeneous variance (homoscedasticity), i.e. the variance around the 
regression line is the same for all values of the independent variable. 
* The residuals must follow a normal distribution with a mean of zero so that the coefficient 
significance tests are not biased. 

As with ANOVA, the function plot() applied to the result of the regression gives us the means to 
check some of these conditions. 

par(mfrow=c(2,2)) 
plot(myDemoRegModel) 

 

par(par0) 

Application 

Let us take the complete data that we have prepared at the beginning of this session. 

chart.Correlation(myData2[, c("IMG","I_NMG_Mean_RT")]) 
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myRegModel <- lm(I_NMG_Mean_RT ~ IMG, data=myData2) 
summary(myRegModel) 

##  
## Call: 
## lm(formula = I_NMG_Mean_RT ~ IMG, data = myData2) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -144.21  -43.65  -11.38   33.48  420.33  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 757.6752     6.5691  115.34   <2e-16 *** 
## IMG          -0.2326     0.0133  -17.48   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 65.24 on 2640 degrees of freedom 
## Multiple R-squared:  0.1038, Adjusted R-squared:  0.1034  
## F-statistic: 305.7 on 1 and 2640 DF,  p-value: < 2.2e-16 

plot(myData2$IMG, myData2$I_NMG_Mean_RT) 
# draw the regression line 
abline(myRegModel, lwd=2, col="red") 
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par(mfrow=c(2,2)) 
plot(myRegModel) 
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par(par0) 

Compare these results of the regression with that of the demonstration sample. 

Multiple linear regression 

In the results of the analysis we have just done to study the link between naming latency and word 
imageability, we can see that, although this link is highly significant (Pr(>|t|) < 2e-16), it is not 
very strong (r = -0.32) and the imageability only explains 10% of the variance of the naming 
latency (R2 = 0.1038). 

The naming latency probably depends on other factors. Let us see if among the quantitative 
variables of our sample, some also have a link with this variable to explain. And look at some 
different ways to draw correlograms. 

chart.Correlation(myData2[, c("I_NMG_Mean_RT", "IMG", "BFRQ", "CNC", "FAM", 
"KFFRQ", "NLET", "NSYL")]) 

  

If we take as a reference the link with the imageability, the familiarity, the number of letters and 
the number of syllables have a greater correlation coefficient with the naming latency. Let's start 
by adding FAM to our model. 

myMultiRegModel <- lm(I_NMG_Mean_RT ~ IMG + FAM, data=myData2) 
summary(myMultiRegModel) 

https://rstudio-pubs-static.s3.amazonaws.com/240657_5157ff98e8204c358b2118fa69162e18.html#visualization-of-a-correlation-matrix
https://rstudio-pubs-static.s3.amazonaws.com/240657_5157ff98e8204c358b2118fa69162e18.html#visualization-of-a-correlation-matrix
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##  
## Call: 
## lm(formula = I_NMG_Mean_RT ~ IMG + FAM, data = myData2) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -165.87  -41.25   -6.15   31.05  331.45  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 919.35153    8.61955  106.66   <2e-16 *** 
## IMG          -0.14320    0.01240  -11.55   <2e-16 *** 
## FAM          -0.41397    0.01614  -25.65   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 58.38 on 2639 degrees of freedom 
## Multiple R-squared:  0.2826, Adjusted R-squared:  0.282  
## F-statistic: 519.8 on 2 and 2639 DF,  p-value: < 2.2e-16 

NLET and NSYL being very correlated, we will only take NLET and add it to the model. 

myMultiRegModel2 <- lm(I_NMG_Mean_RT ~ IMG + FAM + NLET, data=myData2) 
summary(myMultiRegModel2) 

##  
## Call: 
## lm(formula = I_NMG_Mean_RT ~ IMG + FAM + NLET, data = myData2) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -115.42  -33.65   -5.21   27.72  335.38  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 749.95651    9.25873  81.000  < 2e-16 *** 
## IMG          -0.03448    0.01124  -3.067  0.00219 **  
## FAM          -0.35874    0.01400 -25.632  < 2e-16 *** 
## NLET         14.25332    0.46696  30.524  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 50.2 on 2638 degrees of freedom 
## Multiple R-squared:  0.4698, Adjusted R-squared:  0.4692  
## F-statistic: 779.3 on 3 and 2638 DF,  p-value: < 2.2e-16 

The three predictor have a significant effect on the dependent variable. The variance explained by 
this model is close to 47% now. 

We can test with an ANOVA if the difference between the residual sum of squares of the two last 
models is significant. 
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# the function must be anova() (and no more aov()) 
anova (myMultiRegModel, myMultiRegModel2) 

## Analysis of Variance Table 
##  
## Model 1: I_NMG_Mean_RT ~ IMG + FAM 
## Model 2: I_NMG_Mean_RT ~ IMG + FAM + NLET 
##   Res.Df     RSS Df Sum of Sq     F    Pr(>F)     
## 1   2639 8994814                                  
## 2   2638 6647149  1   2347665 931.7 < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

ANOVA shows that the addition of NLET significantly improves the model (RSS for model 2 is less 
than RSS for model 1). 

Is there one or more interactions between these three regressors? 

myMultiRegModel2interact <- lm(I_NMG_Mean_RT ~ IMG * FAM * NLET, data=myData2) 
summary(myMultiRegModel2interact) 

##  
## Call: 
## lm(formula = I_NMG_Mean_RT ~ IMG * FAM * NLET, data = myData2) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -136.73  -32.04   -5.19   26.46  332.79  
##  
## Coefficients: 
##                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   8.197e+02  9.911e+01   8.271  < 2e-16 *** 
## IMG          -4.516e-01  2.131e-01  -2.119  0.03422 *   
## FAM          -5.227e-01  1.969e-01  -2.654  0.00799 **  
## NLET          2.571e+01  1.338e+01   1.921  0.05479 .   
## IMG:FAM       8.853e-04  4.170e-04   2.123  0.03385 *   
## IMG:NLET      1.640e-02  3.011e-02   0.545  0.58613     
## FAM:NLET     -1.993e-02  2.709e-02  -0.736  0.46203     
## IMG:FAM:NLET -4.093e-05  6.002e-05  -0.682  0.49534     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 49.38 on 2634 degrees of freedom 
## Multiple R-squared:  0.4876, Adjusted R-squared:  0.4863  
## F-statistic: 358.1 on 7 and 2634 DF,  p-value: < 2.2e-16 

The effect of NLET disappears in favor of the interaction between IMG and FAM. We can simplify 
the model by taking into account only the significant interaction. 

myMultiRegModel2interact2 <- lm(I_NMG_Mean_RT ~ IMG * FAM + NLET, data=myData2) 
summary(myMultiRegModel2interact2) 
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##  
## Call: 
## lm(formula = I_NMG_Mean_RT ~ IMG * FAM + NLET, data = myData2) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -127.26  -32.92   -5.16   26.62  337.73  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  9.665e+02  3.177e+01  30.421  < 2e-16 *** 
## IMG         -5.078e-01  6.742e-02  -7.532 6.83e-14 *** 
## FAM         -7.971e-01  6.313e-02 -12.627  < 2e-16 *** 
## NLET         1.426e+01  4.626e-01  30.832  < 2e-16 *** 
## IMG:FAM      9.501e-04  1.335e-04   7.118 1.40e-12 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 49.73 on 2637 degrees of freedom 
## Multiple R-squared:  0.4798, Adjusted R-squared:  0.479  
## F-statistic: 608.1 on 4 and 2637 DF,  p-value: < 2.2e-16 

All regressors and interaction have a significant effect. Is this model better than the previous one 
when the R2 is worse? The Akaike information criterion (AIC) can help us determine the best 
model. 

AIC(myMultiRegModel2interact) 

## [1] 28113.33 

AIC(myMultiRegModel2interact2) 

## [1] 28147.32 

The best model is the one with the minimum AIC value. But parsimony is a rule of thumb in 
choosing our preferred regression model, so we utimately choose the simplest model with the 
fewest terms. 

Let's illustrate the interaction with the visreg package. 

library(visreg) 

visreg2d(myMultiRegModel2interact2,"IMG","FAM") 

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://journal.r-project.org/archive/2017/RJ-2017-046/RJ-2017-046.pdf


1st Summer School of ILCB - September 4-6, 2018 - Marseille, France Part III - 19/23 
 

 

To see the differences with variables without interaction: 

visreg2d(myMultiRegModel2interact2,"IMG","NLET") 
visreg2d(myMultiRegModel2interact2,"FAM","NLET") 

 

Finally, check if the application conditions are met with some graphics. 

par(mfrow=c(2,2)) 
plot(myMultiRegModel2interact2) 
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par(par0) 

 

ANOVA and linear regression are the same thing 

Let's take our example of one-way ANOVA: 

originalData4 <- read.csv2("imageability.csv") 
names(originalData4)[2]<-"Imageability" 
myData4 <- originalData4[, c("I_NMG_Mean_RT", "Imageability")] 
myData4 <- myData4[complete.cases(myData4),] 
myData4$Imageability <- droplevels(myData4$Imageab) 
summary(myData4) 

##  I_NMG_Mean_RT        Imageability  
##  Min.   : 510.9   high-img  :1380   
##  1st Qu.: 598.9   low-img   : 627   
##  Median : 634.3   medium-img: 849   
##  Mean   : 647.8                     
##  3rd Qu.: 682.3                     
##  Max.   :1070.1 

Here is the analysis of variance: 



1st Summer School of ILCB - September 4-6, 2018 - Marseille, France Part III - 21/23 
 

fitByAnova <- aov(I_NMG_Mean_RT ~ Imageability, data=myData4) 
summary(fitByAnova) 

##                Df   Sum Sq Mean Sq F value Pr(>F)     
## Imageability    2   967894  483947   107.5 <2e-16 *** 
## Residuals    2853 12843431    4502                    
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

meanByGroup <- by(myData4$I_NMG_Mean_RT, myData4$Imageability, mean) 
meanByGroup 

## myData4$Imageability: high-img 
## [1] 630.608 
## --------------------------------------------------------  
## myData4$Imageability: low-img 
## [1] 676.7269 
## --------------------------------------------------------  
## myData4$Imageability: medium-img 
## [1] 654.254 

TukeyHSD(fitByAnova) 

##   Tukey multiple comparisons of means 
##     95% family-wise confidence level 
##  
## Fit: aov(formula = I_NMG_Mean_RT ~ Imageability, data = myData4) 
##  
## $Imageability 
##                          diff       lwr       upr p adj 
## low-img-high-img     46.11894  38.54155  53.69632     0 
## medium-img-high-img  23.64605  16.78358  30.50853     0 
## medium-img-low-img  -22.47288 -30.75754 -14.18823     0 

In ANOVA, the categorical variable is effect coded, which means that each group mean is compared 
to the global mean. 

We can apply a linear regression to these data with the same formula: 

fitByLinReg <- lm(I_NMG_Mean_RT ~ Imageability, data=myData4) 
summary(fitByLinReg) 

##  
## Call: 
## lm(formula = I_NMG_Mean_RT ~ Imageability, data = myData4) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -148.40  -46.76  -12.15   33.11  415.85  
##  
## Coefficients: 
##                        Estimate Std. Error t value Pr(>|t|)     
## (Intercept)             630.608      1.806  349.15  < 2e-16 *** 
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## Imageabilitylow-img      46.119      3.231   14.27  < 2e-16 *** 
## Imageabilitymedium-img   23.646      2.927    8.08 9.47e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 67.09 on 2853 degrees of freedom 
## Multiple R-squared:  0.07008,    Adjusted R-squared:  0.06943  
## F-statistic: 107.5 on 2 and 2853 DF,  p-value: < 2.2e-16 

In the regression, the categorical variable is dummy coded. The dummy coding creates two 1/0 
variables: 
* Imageabilitylow-img = 1 for observations with the low-img level, 0 otherwise; 
* Imageabilitymedium-img = 1 for observations with the medium-img level, 0 otherwise. 
Observations with high-img level have a 0 value on both of these variables; high-img group is 
called the reference group (the first level by default). 

Each group intercept is compared to the reference group intercept. Since the intercept is defined 
as the mean value when all other predictors = 0, and there are no other predictors, the three 
intercepts are just means. 

We can see that: 
* the F-statistic has the same value (107.5) in ANOVA and in linear regression, 
* the intercept of linear regression is the mean of group high-img, the reference group, 
* the coefficient estimate is the difference between the mean for the group and the intercept (or 
mean of the reference group) as we can verify in the mean differences given by the ANOVA post-
hoc Tukey test. 

intercept <- fitByLinReg$coefficient[1] 
intercept 

## (Intercept)  
##     630.608 

meanByGroup[2:3] - intercept 

## myData4$Imageability 
##    low-img medium-img  
##   46.11894   23.64605 

Exercices 
• Re-do the simple regression graph to show the intercept. 

 

• What do we get by multiplying the slope of a simple regression line by the variance of x? 
 

• What is the effect of standardizing the two variables of our simple linear regression ? 

Brain break 

Green jelly beans linked to acne! 

https://sebastianraschka.com/faq/docs/pearson-r-vs-linear-regr.html
http://explainxkcd.com/wiki/index.php/882:_Significant
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"Facts are stubborn, but statistics are more pliable." - Mark Twain 

"To consult a statistician after an experiment is finished is often merely to ask him to conduct a 
post-mortem examination. He can perhaps say what the experiment died of." - R.A.Fisher 

Some good Internet pages on linear regression : 
* https://uc-r.github.io/linear_regression 
* http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-tutorial-and-
examples 
* https://www.theanalysisfactor.com/13-steps-regression-anova/ 

To go further on ANOVA and linear regression with R, the free PDF book by Julian Faraway, a 
classic. 

https://uc-r.github.io/linear_regression
http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-tutorial-and-examples
http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-tutorial-and-examples
https://www.theanalysisfactor.com/13-steps-regression-anova/
http://www.maths.bath.ac.uk/~jjf23/book/pra.pdf
http://people.bath.ac.uk/jjf23/

